Warning: Undefined array key 0 in /var/www/enciclo-v4/app/src/Content/CleanService.php on line 1357
Funciones de una variable compleja y teoría de las funciones analíticas


Funciones de una variable compleja y teoría de las funciones analíticas

16/07/2012 5.862 Palabras

Funciones de Variable Compleja Introducción • Cuando se inició el interés por la noción de función, es decir, a finales del siglo XVII y principios del XVIII, los matemáticos tuvieron la «curiosidad» de examinar qué sucedía cuando la variable real x era reemplazada por una variable imaginaria z (todavía no se decía «compleja»). Así, desde 1702, Leibniz y Jean Bernouilli no dudan en hablar del logaritmo de un número imaginario, es decir, de la función log z para z compleja. A decir verdad, como buenos matemáticos, al principio desconfiaron de su intuición y discutieron largamente sobre la validez de esta generalización. ¿Cómo, por ejemplo, definir el logaritmo de i2, cualquiera que sea la base escogida? En efecto, i2= – l, y la función logarítmica sólo se define para una variable positiva: pero ¿qué es un número complejo «positivo»? La discusión duró cincuenta años: entre Leibniz y Bernouilli hasta 1726, entre Euler y D’Alembert hasta 1747. Hacia 1750, Euler clarificó la cuestión y demostró que todo número, real o imaginario, poseía una infinidad de logaritmos, todos imaginarios excepto uno (cuando el número es positivo).