Warning: Undefined array key 0 in /var/www/enciclo-v4/app/src/Content/CleanService.php on line 1357
Ortogonal


Ortogonal

11/07/2012 4.092 Palabras

Ortogonalidad en espacios vectoriales Definición Formalmente, en un espacio vectorial con producto interior V, dos vectores x ∈ V {\displaystyle x\in V} e y ∈ V {\displaystyle y\in V} son ortogonales si el producto escalar de ⟨ x , y ⟩ {\displaystyle \langle x,y\rangle } es cero. Esta situación se denota x ⊥ y {\displaystyle x\perp y} . Además, un conjunto A se dice que es ortogonal a otro conjunto B, si cualquiera de los vectores de A es ortogonal a cualquiera de los vectores del conjunto B.